كلية الحاسبات والذكاء الإصطناعي

Calculus

Lecture 02

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

Chapter 1 Topics

- Numbers and Sets.
- Representations of Functions.
- Domain \& Range of Functions.
- Algebra of Functions.
- Increasing and Decreasing.
- Test for Even and Odd Functions.
- Types of Functions and their Graphs.
- Transformations of Functions.

Domain \& Range (33/37)

كلية الحاسبات والذكاء الإصطناعي

Example9:

Find the domain of the following function.

$$
f(x)=\frac{2 x+3}{\sqrt{x-2}}
$$

Domain \& Range (33/37)

كلية الحاسبات والذكاء الإصطناعي

Example9:

Find the domain of the following function.

$$
f(x)=\frac{2 x+3}{\sqrt{x-2}}
$$

Numerator is defined for all real numbers.
Denominator is defined for $x-2>0$. Then, $x>2$.
So, the domain of the function is the interval $(2, \infty)$.

Domain \& Range (34/37)

كلية الحاسبات والذكاء الإصطناعي

Example10:

Find the domain of the following function.

$$
f(x)=\frac{2 x+3}{\sqrt{x}-2}
$$

Domain \& Range (34/37)

Example10:

Find the domain of the following function.

$$
f(x)=\frac{2 x+3}{\sqrt{x}-2}
$$

Numerator is defined for all real numbers.
Denominator is defined for:

1) $x \geq 0$ and 2) $\sqrt{x}-2 \neq 0$ (i. e., $x \neq 4$)

So, the domain of the function is the interval $[0, \infty)-\{4\}$.

Domain \& Range (35/37)

كلية الحاسبات والذكاء الإصطناعي

Example11:

Find the domain and range of the following function.

$$
f(x)=\frac{3}{x}
$$

Domain \& Range (35/37)

Example11:

Find the domain and range of the following function.

$$
f(x)=\frac{3}{x}
$$

The domain of the function is $\mathbb{R}-\{0\}$.
For the range, $y=\frac{3}{x}$, then $x=\frac{3}{y}$
So, the range of the function is $\mathbb{R}-\{0\}$.

Domain \& Range (36/37)

كلية الحاسبات والذكاء الإصطناعي

Example12:

Find the domain and range of the following function.

$$
f(x)=\frac{3 x-4}{x}
$$

Domain \& Range (36/37)

Example12:

Find the domain and range of the following function.

$$
f(x)=\frac{3 x-4}{x}
$$

The domain of the function is $\mathbb{R}-\{0\}$.
For the range, $y=\frac{3 x-4}{x}$, then $x=\frac{-4}{y-3}$
So, the range of the function is $\mathbb{R}-\{3\}$.

Domain \& Range (37/37)

كلية الحاسبات والذكاء الإصطناعي

Example13:

Find the domain and range of the following function.

$$
f(x)=x^{2}+4
$$

Domain \& Range (37/37)

Example13:

Find the domain and range of the following function.

$$
f(x)=x^{2}+4
$$

The domain of the function is all the real numbers.
For the range, $y=x^{2}+4$. Therefore, $x^{2}=y-4$, then x $=\sqrt{y-4}$. Therefore, $y \geq 4$. So, the range of the function is the interval $[4, \infty)$.

Function (1/4)

كلية الحاسبات والذكاء الإصطناعي

Function (2/4)

In 1730-1735,
Leonhard Euler used the word "function" to describe any expression made up of a variable and some constants.

He introduced the notation $y=f(x)$.

Leonhard Euler (Switzerland)

Function (3/4)

كلية الحاسبات والذكاء الإصطناعي

Example:

$$
f(x)=x^{2}-x+4
$$

Name: f
Input (independent variable): \boldsymbol{x}
Output (dependent variable): $y=x^{2}-x+4$

Function (3/4)

كلية الحاسبات والذكاء الإصطناعي

Example:

$$
\begin{aligned}
& f(x)=x^{2}-x+4 \\
& f(1)= \\
& f(0)= \\
& f(-2)=
\end{aligned}
$$

Function (3/4)

كلية الحاسبات والذكاء الإصطناعي

Example:

$$
\begin{aligned}
& f(x)=x^{2}-x+4 \\
& f(1)=(1)^{2}-(1)+4=1-1+4=4 \\
& f(0)=(0)^{2}-0+4=4 \\
& f(-2)=(-2)^{2}-(-2)+4=4+2+4=10
\end{aligned}
$$

Function (4/4)

كلية الحاسبات والذكاء الإصطناعي

Example:

$$
\begin{aligned}
& f(x)=x^{2}-x+4 \\
& f(a)= \\
& f(2 b)=
\end{aligned}
$$

Function (4/4)

كلية الحاسبات والذكاء الإصطناعي

Example:

$$
\begin{aligned}
& f(x)=x^{2}-\boldsymbol{x}+\boldsymbol{4} \\
& f(a)=(a)^{2}-(a)+4 \\
& f(2 b)=(2 b)^{2}-(2 b)+4
\end{aligned}
$$

Algebra of Functions (1/5)

Definition:

If f and g are functions, then for every x that belongs to the domains of both f and g (that is, for $\boldsymbol{x} \in \boldsymbol{D}(\boldsymbol{f}) \cap \boldsymbol{D}(\boldsymbol{g})$), we define functions $f+g, f-g, f g$ and f / g by the formulas

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f-g)(x) & =f(x)-g(x) \\
(f g)(x) & =f(x) g(x) \\
\left(\frac{f}{g}\right)(x) & =\frac{f(x)}{g(x)} \quad(\text { where } g(x) \neq 0)
\end{aligned}
$$

Algebra of Functions (2/5)

Definition:

Functions can also be multiplied by constants: if c is a real number, then the function $c f$ is defined for all x in the domain of f

$$
(c f)(x)=c f(x)
$$

Algebra of Functions (3/5)

Example :

The functions defined by the formulas

$$
f(x)=\sqrt{x} \quad \text { and } \quad g(x)=\sqrt{1-x}
$$

Find $D(f) \cap D(g)$

Algebra of Functions (3/5)

Example :

The functions defined by the formulas

$$
f(x)=\sqrt{x} \quad \text { and } \quad g(x)=\sqrt{1-x}
$$

$D(f)=[0, \infty)$
$D(g)=(-\infty, 1]$
Then, $D(f) \cap D(g)=[0, \infty) \cap(-\infty, 1]=[0,1]$

Algebra of Functions (4/5)

Example : $\quad f(x)=\sqrt{x}$ and $g(x)=\sqrt{1-x}$

Function	Formula	Domain
$f+g$	$(f+g)(x)=\sqrt{x}+\sqrt{1-x}$	$[0,1]=D(f) \cap D(g)$
$f-g$	$(f-g)(x)=\sqrt{x}-\sqrt{1-x}$	$[0,1]$
$g-f$	$(g-f)(x)=\sqrt{1-x}-\sqrt{x}$	$[0,1]$
$f \cdot g$	$(f \cdot g)(x)=f(x) g(x)=\sqrt{x(1-x)}$	$[0,1]$
f / g	$\frac{f}{g}(x)=\frac{f(x)}{g(x)}=\sqrt{\frac{x}{1-x}}$	$[0,1)(x=1$ excluded $)$
g / f	$\frac{g}{f}(x)=\frac{g(x)}{f(x)}=\sqrt{\frac{1-x}{x}}$	$(0,1](x=0$ excluded $)$

Algebra of Functions (5/5)

Example :

The functions defined by the formulas

$$
f(x)=\sqrt{9-x^{2}} \quad \text { and } \quad g(x)=\sqrt{x^{2}-1}
$$

Find $D(f) \cap D(g)$

Algebra of Functions (5/5)

Example :

The functions defined by the formulas

$$
f(x)=\sqrt{9-x^{2}} \quad \text { and } \quad g(x)=\sqrt{x^{2}-1}
$$

$D(f)=[-3,3]$
$D(g)=(-\infty,-1] \cup[1, \infty)$
Then, $D(f) \cap D(g)=$

Algebra of Functions (5/5)

Example :

The functions defined by the formulas

$$
f(x)=\sqrt{9-x^{2}} \quad \text { and } \quad g(x)=\sqrt{x^{2}-1}
$$

$D(f)=[-3,3]$

$D(g)=(-\infty,-1] \cup[1, \infty)$
Then, $D(f) \cap D(g)=$

Algebra of Functions (5/5)

Example :

The functions defined by the formulas

$$
f(x)=\sqrt{9-x^{2}} \quad \text { and } \quad g(x)=\sqrt{x^{2}-1}
$$

$D(f)=[-3,3]$
$D(g)=(-\infty,-1] \cup[1, \infty)$
Then, $D(f) \cap D(g)=[-3,-1] \cup[1,3]$

The Composite Function (1/10)

The Composite Function:

Let f and g be functions. The composite function, or composition, of g and f is the function whose values are given by $g(f(x))$ for all x in the domain of f such that $f(x)$ is in the domain of g. Written as $(g \circ f)(x)$

The Composite Function (2/10)

The Composite Function:

The composition of f and g is the function $f \circ g$
(" f composed with g ") is defined by

$$
(f \circ g)(x)=f(g(x))
$$

To be valid: $R(g) \subseteq D(f)$

The Composite Function (3/10)

The Composite Function:

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$

is the set of values of x in the domain of g such that $g(x)$ lies in the domain of f.

The Composite Function (4/10)

كلية الحاسبات والذكاء الإصطناعي

Example:

If $f(x)=\sqrt{x}$ and $g(x)=x+1$, find
(a) $(f \circ g)(x)$
(b) $(g \circ f)(x)$
(c) $(f \circ f)(x)$
(d) $(g \circ g)(x)$

The Composite Function (4/10)

كلية الحاسبات والذكاء الإصطناعي

Example:

If $f(x)=\sqrt{x}$ and $g(x)=x+1$, find
(a) $(f \circ g)(x)=f(g(x))=\sqrt{g(x)}=\sqrt{x+1}$
(b) $(g \circ f)(x)=g(f(x))=f(x)+1=\sqrt{x}+1$
(c) $(f \circ f)(x)=f(f(x))=\sqrt{f(x)}=\sqrt{\sqrt{x}}=x^{1 / 4}$
(d) $(g \circ g)(x)=g(g(x))=g(x)+1$

$$
=(x+1)+1=x+2
$$

The Composite Function (5/10)

كلية الحاسبات والذكاء الإصطناعي

Example:

$D(f \circ g)$

If $f(x)=\sqrt{x}$ and $g(x)=x+1$, find
(a) $(f \circ g)(x)=f(g(x))=\sqrt{g(x)}=\sqrt{x+1}$

Domain $[-1, \infty)$

The Composite Function (6/10)

كلية الحاسبات والذكاء الإصطناعي

Example:

$$
D(f \circ g)
$$

If $f(x)=\sqrt{x}$ and $g(x)=x+1$, find
(b) $(g \circ f)(x)=g(f(x))=f(x)+1=\sqrt{x}+1$

Domain $[0, \infty)$

The Composite Function (7/10)

كلية الحاسبات والذكاء الإصطناعي

Example:

$$
D(f \circ g)
$$

If $f(x)=\sqrt{x}$ and $g(x)=x+1$, find
(c) $(f \circ f)(x)=f(f(x))=\sqrt{f(x)}=\sqrt{\sqrt{x}}=x^{1 / 4}$

Domain $[0, \infty)$

The Composite Function (8/10)

كلية الحاسبات والذكاء الإصطناعي

Example:

$D(f \circ g)$

$$
\text { If } f(x)=\sqrt{x} \text { and } g(x)=x+1, \text { find }
$$

(d) $(g \circ g)(x)=g(g(x))=g(x)+1$

$$
=(x+1)+1=x+2
$$

Domain $(-\infty, \infty)$.

The Composite Function (9/10)

كلية الحاسبات والذكاء الإصطناعي

Example:

$D(f \circ g)$

if $f(x)=x^{2}$ and $g(x)=\sqrt{x}$, then $(f \circ g)(x)=$

The Composite Function (10/10)

Example:

$D(f \circ g)$
if $f(x)=x^{2}$ and $g(x)=\sqrt{x}$, then $(f \circ g)(x)=$
$(f \circ g)(x)=(\sqrt{x})^{2}=x$.
However, the domain of $f \circ g$ is $[0, \infty)$, not $(-\infty, \infty)$, since \sqrt{x} requires $x \geq 0$.

Graphs of Function (1/3)

Cartesian coordinate:

René Descartes (France)
In 1637

Graphs of Function (2/3)

Cartesian coordinate:

$f(x)=x^{2}$

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	4
-1	1
0	0
1	1
2	4

Graphs of Function (3/3)

Cartesian coordinate:

Increasing and Decreasing (1/5)

Increasing and Decreasing (2/5)

كلية الحاسبات والذكاء الإصطناعي

A function f is called increasing on an interval I if

$$
f\left(x_{1}\right)<f\left(x_{2}\right) \text { whenever } x_{1}<x_{2} \text { in } I
$$

Increasing and Decreasing (2/5)

كلية الحاسبات والذكاء الإصطناعي

Therefore, the function f is increasing on an interval $[a, b]$

Increasing and Decreasing (3/5)

كلية الحاسبات والذكاء الإصطناعي

A function f is called decreasing on an interval I if

$$
f\left(x_{1}\right)>f\left(x_{2}\right) \text { whenever } x_{1}<x_{2} \text { in } I
$$

Increasing and Decreasing (3/5)

كلية الحاسبات والذكاء الإصطناعي

Therefore, the function f is decreasing on an interval $[b, c]$

Increasing and Decreasing (4/5)

كلية الحاسبات والذكاء الإصطناعي

Increasing and Decreasing (5/5)

100-meter race

Three runners A, B, and C.

Even and Odd Functions (1/10)

Test for Even and Odd Functions

The function $y=f(x)$ is even when

$$
f(-x)=f(x)
$$

The function $y=f(x)$ is odd when

$$
f(-x)=-f(x)
$$

Even and Odd Functions (2/10)

كلية الحاسبات والذكاء الإصطناعي

Example:

Determine whether each function is even, odd, or neither.
a. $f(x)=x^{3}-x$
b. $g(x)=\frac{1}{x^{2}}$
c. $h(x)=-x^{2}-x-1$

Even and Odd Functions (3/10)

Example:

Determine whether each function is even, odd, or neither.
a. $f(x)=x^{3}-x$

This function is odd because

$$
\begin{aligned}
f(-x)=(-x)^{3}-(-x) & =-x^{3}+x \\
& =-\left(x^{3}-x\right)=-f(x)
\end{aligned}
$$

Even and Odd Functions (4/10)

Example:

Determine whether each function is even, odd, or neither.
b. $g(x)=\frac{1}{x^{2}}$

This function is even because

$$
g(-x)=\frac{1}{(-x)^{2}}=\frac{1}{x^{2}}=g(x)
$$

Even and Odd Functions (5/10)

Example:

Determine whether each function is even, odd, or neither.
c. $h(x)=-x^{2}-x-1$

Substituting $-x$ for x produces

$$
h(-x)=-(-x)^{2}-(-x)-1=-x^{2}+x-1
$$

Because $h(x)=-x^{2}-x-1$ and $-h(x)=x^{2}+x+1$,

$$
h(-x) \neq h(x)
$$

Function is not even.

Even and Odd Functions (5/10)

Example:

Determine whether each function is even, odd, or neither.
c. $h(x)=-x^{2}-x-1$
and

$$
h(-x) \neq-h(x) .
$$

Function is not odd.

So, the function is neither even nor odd.

Even and Odd Functions (6/10)

كلية الحاسبات والذكاء الإصطناعي

Even and Odd Functions (7/10)

كلية الحاسبات والذكاء الإصطناعي

Even and Odd Functions (8/10)

Example:

Determine whether each function is even, odd, or neither.

Even and Odd Functions (8/10)

Example:

Determine whether each function is even, odd, or neither.

Odd

Even and Odd Functions (9/10)

Example:

Determine whether each function is even, odd, or neither.

Even and Odd Functions (9/10)

Example:

Determine whether each function is even, odd, or neither.

Even and Odd Functions (10/10)

Example:

Determine whether each function is even, odd, or neither.

Even and Odd Functions (10/10)

Example:

Determine whether each function is even, odd, or neither.

Neither Even nor Odd

Types of Fun. \& Graph (1/18)

Elementary functions fall into three categories:

1. Algebraic functions (Polynomial, Radical, Rational).
2. Trigonometric functions (sine, cosine, tangent, ...).
3. Exponential and logarithmic functions.

Types of Fun. \& Graph (2/18)

Polynomial (1/3):

The most common type of algebraic function is a polynomial function: A function P is called a polynomial if

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where n is a nonnegative integer and the numbers $a_{0}, a_{1}, a_{2}, \ldots$, an are constants called the coefficients of the polynomial. The domain of any polynomial is \mathbb{R}.

Types of Fun. \& Graph (2/18)

Polynomial (2/3):

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

If the leading coefficient $a_{n} \neq 0$, then the degree of the polynomial is n. For example, the function

$$
P(x)=2 x^{6}-x^{4}+\frac{2}{5} x^{3}+\sqrt{2}
$$

is a polynomial of degree 6 .

Types of Fun. \& Graph (2/18)

Polynomial (3/3):

If $a \neq 0$,
Zeroth degree: $f(x)=a \quad$ Constant function
First degree: $\quad f(x)=a x+b \quad$ Linear function
Second degree: $f(x)=a x^{2}+b x+c \quad$ Quadratic function Third degree: $\quad f(x)=a x^{3}+b x^{2}+c x+d \quad$ Cubic function

Types of Fun. \& Graph (3/18)

Constant Function (1/3):

Zeroth degree: $\quad f(x)=a$

If $a=3$

Types of Fun. \& Graph (3/18)

Constant Function (2/3):

Zeroth degree: $\quad f(x)=a$

If $a=3$
Domain $=? ?$
Range $=$??

Types of Fun. \& Graph (3/18)

Constant Function (2/3):

Zeroth degree: $\quad f(x)=a$

If $a=3$
Domain $=\mathbb{R}$
Range $=\{3\}$

Types of Fun. \& Graph (3/18)

Constant Function (3/3):

Zeroth degree: $\quad f(x)=a$

If $a=3$

Odd or Even??

Types of Fun. \& Graph (3/18)

كلية الحاسبات والذكاء الإصطناعي

Constant Function (3/3):

Zeroth degree: $\quad f(x)=a$

If $a=3$

Even
$f(-x)=f(x)$

Types of Fun. \& Graph (4/18)

Linear Function (1/15):

First degree:
$f(x)=m x+b$
Set $x=0$ to find b
Set $y=0$ to find a

Types of Fun. \& Graph (4/18)

Linear Function (2/15):

First degree:

$f(x)=m x+b$
The number m is called the slope of the line.

$$
m=\frac{\text { change of } y}{\text { change of } x}=\frac{\Delta y}{\Delta x}
$$

$\Delta y=y_{2}-y_{1}=$ change in y
$\Delta x=x_{2}-x_{1}=$ change in x

The rate of change of y with respect to x

$$
x_{1} \neq x_{2}
$$

Types of Fun. \& Graph (4/18)

Linear Function (3/15):

First degree:
$f(x)=m x+b$
The number m is
called the slope
of the line.

$$
m=\frac{\text { change of } y}{\text { change of } x}=\frac{\Delta y}{\Delta x}
$$

The rate of change is constant

Types of Fun. \& Graph (4/18)

Linear Function (4/15):

First degree:
$f(x)=m x+b$
The number m is called the slope of the line.

$$
m=\frac{\text { change of } y}{\text { change of } x}=\frac{\Delta y}{\Delta x}
$$

$$
m=-9 / 5
$$

Types of Fun. \& Graph (4/18)

Linear Function (5/15):

First degree:
$f(x)=m x+b$
The number m is called the slope of the line.

$$
m>0
$$

If m is positive, then the line rises from left to right.

Types of Fun. \& Graph (4/18)

Linear Function (6/15):
First degree:
$f(x)=2 x+1$

Types of Fun. \& Graph (4/18)

Linear Function (7/15):

First degree:
$f(x)=m x+b$
The number m is called the slope of the line.

$$
m=0
$$

If m is zero, then the line is horizontal.

Types of Fun. \& Graph (4/18)

Linear Function (8/15):

First degree:

$$
f(x)=m x+b
$$

If $m=0, b=2$

$m=0$; line is horizontal

Types of Fun. \& Graph (4/18)

Linear Function (9/15):

First degree:
$f(x)=m x+b$
The number m is called the slope of the line.

$$
m<0
$$

If m is negative, then the line falls from left to right.

Types of Fun. \& Graph (4/18)

Linear Function (10/15):

First degree:

$$
f(x)=-\frac{1}{3} x+2
$$

Types of Fun. \& Graph (4/18)

Linear Function (11/15):

First degree:
$f(x)=m x+b$
The number m is called the slope of the line.
m is undefined

If m is undefined, then the line is vertical.

Types of Fun. \& Graph (4/18)

Linear Function (12/15):

First degree:
$f(x)=m x+b$
The number m is called the slope of the line.

$$
m=\frac{\text { change of } y}{\text { change of } x}=\frac{\Delta y}{\Delta x}
$$

Types of Fun. \& Graph (4/18)

Linear Function (13/15):

$$
f(x)=2 x-4
$$

$$
f(x)=m x+b
$$

$$
m=2
$$

$$
b=-4 \quad y \text { intercept }
$$

x intercept
$2 x-4=0 \rightarrow x=2$

Types of Fun. \& Graph (4/18)

Linear Function (13/15):

$$
f(x)=2 x-4
$$

$$
f(x)=m x+b
$$

$$
m=2
$$

$$
b=-4 \quad y \text { intercept }
$$

x intercept
$2 x-4=0 \rightarrow x=2$

Types of Fun. \& Graph (4/18)

Linear Function (14/15):
First degree:
$f(x)=m x+b$
The number m is called the slope of the line.

$$
m_{1}=m_{2}
$$

Types of Fun. \& Graph (4/18)

Linear Function (15/15):

First degree:

$f(x)=m x+b$
The number m is called the slope of the line.

$$
m_{1}=-\frac{1}{m_{2}}
$$

Or $\quad m_{1} m_{2}=-1$

Types of Fun. \& Graph (5/18)

Vertical Parabola (1/3):
Quadratic function
Second degree:

$$
\begin{aligned}
& f(x)=a x^{2}+b x+c \\
& \text { If } a=1, b=2, c=1
\end{aligned}
$$

Types of Fun. \& Graph (5/18)

كلية الحاسبات والذكاء الإصطناعي

Vertical Parabola (2/3):
Quadratic function
Second degree:
$f(x)=a x^{2}+b x+c$
If $a=1, b=2, c=1$
The parabola opens upward if $a>0$ and downward if $a<0$

Types of Fun. \& Graph (5/18)

Vertical Parabola (3/3):

If a quadratic equation is given in the form $a x^{2}+b x+c$, we can use completing the square to rewrite it in the form

$$
y=a(x-h)^{2}+\boldsymbol{k}
$$

In this form, we can identify the vertex as (h, \boldsymbol{k})

The parabola opens upward if $a>0$ and downward if $a<0$

Types of Fun. \& Graph (6/18)

Completing Square (1/2):
$x^{2}+2 a x+a^{2}=(x+a)^{2}$

$$
y=a(x-h)^{2}+\boldsymbol{k}
$$

$x^{2}+2 a x=(x+a)^{2}-a^{2}$
If a quadratic equation is given in the form
$y=x^{2}-4 x+3$, then
$y=\left((x-2)^{2}-4\right)+3$
$y=(x-2)^{2}-1 \rightarrow$ vertex $=(2,-1)$
The parabola opens upward because $a=1>0$

Types of Fun. \& Graph (6/18)

Completing Square (2/2):
$x^{2}+2 a x+a^{2}=(x+a)^{2}$

$$
y=a(x-h)^{2}+k
$$

$x^{2}+2 a x=(x+a)^{2}-a^{2}$
If a quadratic equation is given in the form
$y=2 x^{2}+4 x+7$, then
$y=2\left(x^{2}+2 x\right)+7 \quad \rightarrow \quad y=2\left((x+1)^{2}-1\right)+7$
$y=2(x+1)^{2}+5 \rightarrow$ vertex $=(-1,5)$
The parabola opens upward because $a=2>0$

Types of Fun. \& Graph (6/18)

Another Method:

If a quadratic equation is given in the form
$y=x^{2}-4 x+3$
$y=a x^{2}+b x+c$,
then $a=1, b=-4, c=3$
$h=\frac{-b}{2 a}=\frac{4}{2}=2$
\therefore vertex $=(2,-1)$
$k=(2)^{2}-4(2)+3=-1$

Types of Fun. \& Graph (7/18)

Example 1:

$y=x^{2}$, we can use completing the square to rewrite it in the form

$$
\begin{aligned}
& y=1(x-0)^{2}+0 \\
& y=a(x-h)^{2}+k
\end{aligned}
$$

In this form, we can identify the vertex as $\mathbf{(0 , 0})$

The parabola opens upward because $a>0$

Types of Fun. \& Graph (8/18)

Example 2:

$y=-4 x^{2}-8 x+5$, we can use completing the square to rewrite it in the form
$h=\frac{-b}{2 a}=\frac{8}{-8}=-1$
$k=(-4)(-1)^{2}-8(-1)+5=9$
So, the vertex is $(-1,9)$

The parabola opens downward because $a<0$

Types of Fun. \& Graph (9/18)

Example 3:

Quadratic function
Second degree:
$f(x)=a x^{2}+b x+c$
If $a=1, b=2, c=1$
$f(x)=x^{2}+2 x+1$

Types of Fun. \& Graph (9/18)

كلية الحاسبات والذكاء الإصطناعي

Example 3:

Quadratic function
Second degree:

$$
f(x)=a x^{2}+b x+c
$$

$$
\text { If } a=1, b=2, c=1
$$

$$
\begin{aligned}
& h=-\frac{b}{2 a}=-\frac{2}{2}=-1 \\
& k=f(h)=f(-1) \\
& k=0 \\
& \therefore \text { vertex }=(-1,0)
\end{aligned}
$$

$f(x)=x^{2}+2 x+1$

Types of Fun. \& Graph (9/18)

Example 3:
Quadratic function
Second degree:
$f(x)=a x^{2}+b x+c$
If $a=1, b=2, c=1$
$f(x)=x^{2}+2 x+1$

The parabola opens upward because $a>0$

Types of Fun. \& Graph (9/18)

كلية الحاسبات والذكاء الإصطناعي

Example 3:

Quadratic function
Second degree:
$f(x)=a x^{2}+b x+c$
If $a=1, b=2, c=1$
$f(x)=x^{2}+2 x+1$
$f(0)=1$

Types of Fun. \& Graph (9/18)

Example 3:
Quadratic function
Second degree:
$f(x)=a x^{2}+b x+c$
If $a=1, b=2, c=1$
Domain $=$? ?
Range $=$? ?

Types of Fun. \& Graph (9/18)

Example 3:
Quadratic function
Second degree:
$f(x)=a x^{2}+b x+c$
If $a=1, b=2, c=1$
Domain $=\mathbb{R}$
Range $=[0, \infty)$

Types of Fun. \& Graph (9/18)

Example 3:
Quadratic function
Second degree:
$f(x)=a x^{2}+b x+c$
If $a=1, b=2, c=1$

Types of Fun. \& Graph (9/18)

كلية الحاسبات والذكاء الإصطناعي

Example 3:
Quadratic function
Second degree:
$f(x)=a x^{2}+b x+c$
If $a=1, b=2, c=1$

Not odd
Not Even

Types of Fun. \& Graph (10/18)

Examples of Polynomial Functions (1/8):

$f(x)=x^{2}-2 x+3$
$f(x)=a x^{2}+b x+c$
$a=1, \quad b=-2, c=3$
$h=-\frac{b}{2 a}=\frac{-(-2)}{2}=1$
$k=f(1)=(1)^{2}-2(1)+3=2$
\therefore vertex $=(1,2)$

Types of Fun. \& Graph (10/18)

كلية الحاسبات والذكاء الإصطناعي

Examples of Polynomial Functions (2/8):
$f(x)=x^{2}-2 x+3$
$f(x)=a x^{2}+b x+c$
$a=1, \quad b=-2, c=3$
$h=-\frac{b}{2 a}=\frac{-(-2)}{2}=1$
$k=f(1)=(1)^{2}-2(1)+3=2$
\therefore vertex $=(1,2)$

Types of Fun. \& Graph (11/18)

Examples of Polynomial Functions (3/8):

$f(x)=2 x^{2}-4 x$

$$
\begin{aligned}
& a=2, \quad b=-4, \quad c=0 \\
& h=-\frac{b}{2 a}=\frac{-(-4)}{2(2)}=1 \\
& k=f(1)=2(1)^{2}-4(1)=-2
\end{aligned}
$$

\therefore vertex $=(1,-2)$

Types of Fun. \& Graph (11/18)

Examples of Polynomial Functions (4/8):

$f(x)=2 x^{2}-4 x$

Real Roots:
$2 x^{2}-4 x=0$
$a=2, \quad b=-4, \quad c=0$
From quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

1) Two Real Roots, If $\left(b^{2}-4 a c\right)>0$
2) One Real Root (Double root), If $\left(b^{2}-4 a c\right)=0$
3) No Real Roots, If $\left(b^{2}-4 a c\right)<0$

Two Real roots: $x_{1}=0, x_{2}=2$

Types of Fun. \& Graph (11/18)

Examples of Polynomial Functions (5/8):

$f(x)=2 x^{2}-4 x$

Real Roots:
$2 x^{2}-4 x=0$
$a=2, \quad b=-4, \quad c=0$
From quadratic formula
Real roots: $x_{1}=0, x_{2}=2$

Types of Fun. \& Graph (12/18)

Examples of Polynomial Functions (6/8):
$f(x)=-2 x^{2}-4 x+2$
$a=-2, \quad b=-4, \quad c=2$
$h=-\frac{b}{2 a}=\frac{-(-4)}{2(-2)}=-1$
$k=f(-1)=-2(-1)^{2}-4(-1)+2=4$
\therefore vertex $=(-1,4)$

Types of Fun. \& Graph (12/18)

Examples of Polynomial Functions (7/8):
$f(x)=-2 x^{2}-4 x+2$
$a=-2, b=-4, \quad c=2$
$h=-\frac{b}{2 a}=\frac{-(-4)}{2(-2)}=-1$
$k=f(-1)=-2(-1)^{2}-4(-1)+2=4$
\therefore vertex $=(-1,4)$

Types of Fun. \& Graph (12/18)

Examples of Polynomial Functions (8/8):

$f(x)=-2 x^{2}-4 x+2$

Real Roots:

$$
\begin{aligned}
& -2 x^{2}-4 x+2=0 \\
& a=-2, \quad b=-4, \quad c=2
\end{aligned}
$$

From quadratic formula

Real roots: $x_{1}=\frac{-2-\sqrt{8}}{2} \approx-2.4142$,

$$
x_{2}=(-2+\sqrt{8}) / 2 \approx 0.4142
$$

Types of Fun. \& Graph (12/18)

Examples of Polynomial Functions (8/8):

$f(x)=-2 x^{2}-4 x+2$

Real Roots:
$-2 x^{2}-4 x+2=0$
$a=-2, \quad b=-4, \quad c=2$
From quadratic formula
Real roots: $x_{1}=\frac{-2-\sqrt{8}}{2} \approx-2.4142$,
$x_{2}=(-2+\sqrt{8}) / 2 \approx 0.4142$

Types of Fun. \& Graph (13/18)

Piecewise Defined Functions (1/4):

The absolute value function $f(x)=|x|$

$$
|x|= \begin{cases}x & \text { if } x \geqslant 0 \\ -x & \text { if } x<0\end{cases}
$$

Types of Fun. \& Graph (13/18)

Piecewise Defined Functions (2/4):

The piecewise-defined function
$f(x)= \begin{cases}\frac{5}{2} x-\frac{1}{2} & \text { for }-1 \leq x \leq 1 \\ \frac{1}{2} x-2 & \text { for } x>1\end{cases}$

Types of Fun. \& Graph (13/18)

Piecewise Defined Functions (3/4):

Types of Fun. \& Graph (13/18)

Piecewise Defined Functions (4/4):

Video Lectures

All Lectures: hittps://www.youtube.com/playlist?list=PLx|vc-MGIsEgkSI PPAVJpebKDLo-ijEC

Lecture \#Z: https://www.youtube.com/watch?v=[9wgQPgpaEi\&list=PLx|vc- From 01:41:35 MEDsEgkSI PPAVJpebKDLo-ijEC■index=2
https://www.youtube.com/watch?v= a2 RqT|Dvs\&list=PLxlvcMEDsEgkSI PPAVJpebKDLo-ijEC®index=3

Thank You

Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg

